640 research outputs found

    Towards violation of Born's rule: description of a simple experiment

    Full text link
    Recently a new model with hidden variables of the wave type was elaborated, so called prequantum classical statistical field theory (PCSFT). Roughly speaking PCSFT is a classical signal theory applied to a special class of signals -- "quantum systems". PCSFT reproduces successfully all probabilistic predictions of QM, including correlations for entangled systems. This model peacefully coexists with all known no-go theorems, including Bell's theorem. In our approach QM is an approximate model. All probabilistic predictions of QM are only (quite good) approximations of "real physical averages". The latter are averages with respect to fluctuations of prequantum fields. In particular, Born's rule is only an approximate rule. More precise experiments should demonstrate its violation. We present a simple experiment which has to produce statistical data violating Born's rule. Since the PCSFT-presentation of this experiment may be difficult for experimenters, we reformulate consequences of PCSFT in terms of the conventional wave function. In general, deviation from Born's rule is rather small. We found an experiment amplifying this deviation. We start with a toy example in section 2. Then we present a more realistic example based on Gaussian states with very small dispersion, see section 3.Comment: The paper was completed with the description of an experiment with Gaussian states with very small dispersion. This experiment should induce violation of Born's rule, the fundamental law of Q

    A Fast and Compact Quantum Random Number Generator

    Get PDF
    We present the realization of a physical quantum random number generator based on the process of splitting a beam of photons on a beam splitter, a quantum mechanical source of true randomness. By utilizing either a beam splitter or a polarizing beam splitter, single photon detectors and high speed electronics the presented devices are capable of generating a binary random signal with an autocorrelation time of 11.8 ns and a continuous stream of random numbers at a rate of 1 Mbit/s. The randomness of the generated signals and numbers is shown by running a series of tests upon data samples. The devices described in this paper are built into compact housings and are simple to operate.Comment: 23 pages, 6 Figs. To appear in Rev. Sci. Inst

    Multiple Quantum Well AlGaAs Nanowires

    Full text link
    This letter reports on the growth, structure and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Micro-photoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to non-segmented NWs due to carrier confinement and sidewall passivation

    Comparing the states of many quantum systems

    Get PDF
    We investigate how to determine whether the states of a set of quantum systems are identical or not. This paper treats both error-free comparison, and comparison where errors in the result are allowed. Error-free comparison means that we aim to obtain definite answers, which are known to be correct, as often as possible. In general, we will have to accept also inconclusive results, giving no information. To obtain a definite answer that the states of the systems are not identical is always possible, whereas, in the situation considered here, a definite answer that they are identical will not be possible. The optimal universal error-free comparison strategy is a projection onto the totally symmetric and the different non-symmetric subspaces, invariant under permutations and unitary transformations. We also show how to construct optimal comparison strategies when allowing for some errors in the result, minimising either the error probability, or the average cost of making an error. We point out that it is possible to realise universal error-free comparison strategies using only linear elements and particle detectors, albeit with less than ideal efficiency. Also minimum-error and minimum-cost strategies may sometimes be realised in this way. This is of great significance for practical applications of quantum comparison.Comment: 13 pages, 2 figures. Corrected a misprint on p. 7 and added a few references. Accepted for publication in J Mod Op
    corecore